Uniqueness and nondegeneracy of sign-changing radial solutions to an almost critical elliptic problem

نویسندگان

  • Weiwei Ao
  • Juncheng Wei
  • Wei Yao
چکیده

where 1 < p < N+2 N−2 , N ≥ 3. It is well-known that this equation has a unique positive radial solution. The existence of sign-changing radial solutions with exactly k nodes is also known. However the uniqueness of such solutions is open. In this paper, we show that such sign-changing radial solution is unique when p is close to N+2 N−2 . Moreover, those solutions are non-degenerate, i.e., the kernel of the linearized operator is exactly N -dimensional.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness and nondegeneracy of sign-changing radial solutions of an almost critical problem

∗Department of Mathematics, University of British Columbia, Vancouver, B.C., Canada, V6T 1Z2. Email: [email protected] †Department of Mathematics University of British Columbia, Vancouver, B.C., Canada, V6T 1Z2. Email: [email protected] ‡Departamento de Ingenieŕıa Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS), Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile. Email:...

متن کامل

Radial Singular Solutions of a Critical Problem in a Ball

This paper is devoted to a complete classiication of the radial singular and possibly sign changing solutions of a semilinear elliptic equation with critical or subcritical growth.

متن کامل

Nondegeneracy of Nonradial Sign-changing Solutions to the Nonlinear Schrödinger Equations

We prove the non-degeneracy of the non-radial sign-changing solutions to the nonlinear Schrödinger equation ∆u− u+ |u|p−1u = 0 in R constructed by Musso, Pacard and Wei [19].

متن کامل

Nondegeneracy of Nonradial Sign-changing Solutions to the Nonlinear Schrödinger Equation

We prove that the non-radial sign-changing solutions to the nonlinear Schrödinger equation ∆u− u + |u|p−1u = 0 in R , u ∈ H(R ) constructed by Musso, Pacard, and Wei [19] are non-degenerate. This provides the first example of a non-degenerate sign-changing solution to the above nonlinear Schrödinger equation with finite energy.

متن کامل

Multiplicity of Positive Solutions of laplacian systems with sign-changing weight functions

In this paper, we study the multiplicity of positive solutions for the Laplacian systems with sign-changing weight functions. Using the decomposition of the Nehari manifold, we prove that an elliptic system has at least two positive solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016